

Orbital Debris Detection and Tracking

Fourier Transform Mass Spectrometry

Objective

- Demo feasibility of simulating, detecting, and tracking hypervelocity small space debris
 - Actual/Physical Simulation
 - Charged debris
 - Characterization
 - 1] Fourier Transform Mass Spectrometry
 - 2] Time-of-Flight Mass Spectrometry
 - Detection
 - Direct Detection photoacoustic transducer
 - Indirect Detection Constructive/Destructive Interference, resultant wave deconvolution for soliton detection

Simulation of Charged Debris: - Charged Particles

- Use large "particles" to simulate debris
 - known proteins, synthetic polymers,
 - Pecan pollen
- Charge particles by
 - Glow discharge
 - Electrospray
 - Apply direct current (+, -) for positive vs negative charge
- Inject particles into mass spectrometer
 - Perpendicular to the flow of the spray
 - Use attracting voltage to impart velocity to charged particles
 - Negative DC potential for positively charged debris
 - Positive DC potential for negatively charged debris
- Plasma addition to the flight path of the charged debris

Detection Scheme for Solitons

 Solitons production due to interaction of charged debris and plasma

Characterization of Charged Debris: Fourier Transform Mass Spectrometry

- Cyclotron Motion of charged species is $f=qB/(2\pi m)$
- Trapping motion, trapping in radial direction
- Magnetron motion
- Introduce plasma in the cell while charged debris are trapped
- Use photoacoustic transducer to collect solitons signal in time
- Performed Fourier transform to determine frequencies of solitons
- For indirect detection use interrogation beam
 - Fourier transform of resultant

Characterization of Charged Debris: Time-of-Flight Mass Spectrometry

- Introduce plasma in the field free region in the path of the charged debris (red ribbon)
- Use photoacoustic transducer to collect solitons signal in time
- Performed Fourier transform to determine frequencies of solitons
- For indirect detection use interrogation beam
 - Fourier transform of resultant beam

Summary of Soliton Detection Scheme

- Direct Detection of Solitons
 - Perform Fourier Transform to extract frequencies of solitons
- Indirect Detection
 - Use interrogating beam
 - Known frequency not at frequencies associated with solitons
 - Collection of Resultant Waves
 - Constructive, Destructive, Fractional Interference
 - Perform Fourier Transform of resultant waves to extract frequencies of solitons

Proposed Next Step:

- Preliminary design for satellite sensor prototype...
 - Incorporate attenuator that compensates for distance to simulate long distance soliton signal sources and adjust sensor to pick up those signals. . .

